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Abstract: We present a novel synchronization scheme for secure communication with two 
chaotic unidirectionally coupled Rössler circuits. The circuits are synchronized via one of the 
variables, while a signal is transmitted through another variable. We show that this scheme 
allows more stable communications. The system dynamics is studied numerically and 
experimentally in a wide range of a control parameter. The possibility of secure 
communications with an audio signal is demonstrated. 

1.  Introduction  
In recent years chaos theory has attracted much interest in both the academic area and engineering 
study. Today the potential of chaos theory is recognized in the worldwide with research groups 
actively working on this topic [1]. 
 One of the great achievements of the chaos theory is the application in secure communications. The 
chaos communication fundament is the synchronization of two chaotic systems under suitable 
conditions if one of the systems is driven by the other. Since Pecora and Carrol [2] have demonstrated 
that chaotic systems can be synchronized, the research in synchronization of couple chaotic circuits is 
carried out intensively and some interesting applications such as communications with chaos have 
come out of that research. 
 In this work we use a simple electronic system to develop a novel scheme for chaos secure 
communication with two coupled Rössler circuits. First, we analyze separately each oscillator to study 
their dynamic behaviour when a parameter of control is changed, and then we investigate the 
synchronization effect in the coupled circuits. Bifurcation diagrams of the output voltage are 
constructed using a resistance as a control parameter. While using two channels, we may send an 
information signal via one of the channels and recover the signal via another channel. We will show 
that this scheme can improve synchronization in a system with coexisting attractors. Finally secure 
audio communications with chaos is demonstrated experimentally using the novel communication 
scheme. 
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2.  Experimental setup 
We use the electronic circuits of a Rössler type shown in figure 1. The master circuit can be described 
by the following equations [3]: 
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where 410=α s-1, 050.=Γ , 50.=β , 01.=λ , 15=µ , cRR=γ , R = 10 k Ω , and R
c
 is a control 

parameter  which varied between 1 k Ω and 200 k Ω . 
 The piecewise linear function g(x) is determined by the diode in the operational amplifier A4. The 
amplifier is switched on when the voltage X exceeds 3V. The master and slave circuits are identical. 
When the drive-out signal Y of the master circuit is the drive-in signal of the slave circuit, every 
change in any parameters of the first circuit affects the second circuit. 
 
   (a)                                                                               (b) 

 
 

Figure 1. Electronic schemes for (a) master and (b) slave circuits. 
 
 The output voltages X, Y and Z are registered with an oscilloscope (Tektronics, series 2000). The 
experimental time series and phase space of the isolated master circuit are shown in the figure 2. The 
system displays a homoclinic behavior in the range 22.6 k Ω < Rc < 30 k Ω . 
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Figure 2. (a) Time series of voltage X, (b) chaotic homoclinic trajectory in 
phase space (X,Y,Z). 

 
 A homoclinic chaotic orbit has the property that its phase trajectory fluctuates near a critical point 
in phase space. Figure 2(b) displays the chaotic motion of the homoclinic orbit which is characterized 
by large fluctuations in return times associated with a high sensitivity of the trajectory when the 
chaotic trajectory approaches the critical point. For 30 < R

c
 < to 86.6 k Ω  the dynamics inhibits typical 

Rössler chaos, which the time series are shown in figure 3. In the interval 86.6 k Ω < R
c 
< 107 k Ω  the 

dynamic of the master circuit is periodic and for 107 k Ω <Rc<200 k Ω  the behavior is a steady state.  
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Figure 3. Time series of X for different values of R

c
 showing (a, b) 

Rössler chaos and (c) period-1 regime. 

3.  Numerical simulations 
Mathematically, the Rössler circuit can be described by the system of equations (1)-(4). The control 
parameter is the resistance Rc which varies from 1 k Ω to 200 k Ω . The time series and the trajectories 
in the phase space are shown in figure 4. For R

c
 from 28k Ω  to 32 k Ω , the solution displays 

homoclinic orbit behavior, for R
c
 from 32 k Ω to 96 k Ω  the attractors are chaotic of a Rössler type, 

and for Rc from 96 k Ω to 140 k Ω  the dynamics is periodic. 
 The difference between the experimentally output voltage X of the master circuit and the numerical 
solutions X of the system of equations (1)–(4) is that there are not numerical solutions for inferior 
values of Rc = 28 k Ω , whereas experimentally we find the response up to 22.6 k Ω . The reason for 
this difference is that some elements of the circuits have tolerances in operation conditions (when the 
circuit is switched on) from its stationary values (when the circuit is switched off). For values of R

c 
< 

20.6 k Ω  in experiments and for Rc < 28 k Ω  in the simulations the system has no stable solutions.  
 The results of the numerical simulations are in a good agreement with the experimental results: 
depending on parameter R

c
 the master circuits displays homoclinic orbits, Rössler chaos and periodic 

orbits. This complex dynamic behavior is clearly seen in the bifurcation diagrams in figure 5. In 
experiments the control parameter is varied by the potentiometer R

c
. In both diagrams we observe 

regions of homoclinic orbits for small values of R
c
, and Rössler chaos with period windows for higher 

values. For very large Rc only periodic orbits are observed. 

4.  Synchronization of two coupled chaotic Rössler circuits 
Synchronization of two coupled chaotic Rössler circuits is studied by connecting the output voltage Y 
of the master circuit to the input Y of the slave circuit. By varying the control parameter R

c
 in the 

master circuit we can find synchronous regimes between the master and slave circuits. In figure 6(a) 
we show the temporal series of the output voltages of the master and slave circuits, Y and Y’, when 
they are not coupled. The trajectory in the phase space (Y,Y’) is shown in figure 6(b). It is clearly seen 
that the circuits are not synchronized. 
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Figure 4. (a) Numerical time series of equations (1)-(4) and (b)–(c) phase 
space trajectories showing chaotic homoclinic Rössler attractors. 
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Figure 5. (a) Experimental and (b) Numerical bifurcations diagrams of X of master circuits. 
 
 (a)                                               (b) 

 
 (c)                                               (d) 

 
Figure 6. (a) Time series and (b) phase space trajectories Y

M
 and Y

S
 without coupling, and (c) 

and (d) the same with coupling. 
 
 When the circuits are coupled, i.e. the output variable Y of the master circuit is the input variable Y’ 
of the slave circuit, the circuits are completely synchronized.   
 

(a) 
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  (b)                                                  (c) 

 
Figure 7. (a) Classical communication scheme, (b) intermittent synchronization between master 
and slave circuits, and (c) synchronization error. 

5.  Secure communication with chaotic circuits  
In a traditional chaos communication system a small information signal s(t) is added to a chaotic 
signal Y(t) and it is transmitted, and at a receiver, the transmitted signal s(t)+Y(t) is used to 
synchronize the identical chaotic system. The synchronous chaotic signal at the receiver is then used to 
recover the information signal from the transmitter. Figure 7(a) illustrates this communication scheme 
[4]. 
 In implementation of the traditional scheme to our circuits yields incomplete synchronization 
shown in figure 7(b). When we add a small rectangular information signal s(t) to the output voltage of 
the master circuit Y(t), the sum signal Y(t)+s(t) is used to couple the slave circuit. We observe that the 
output voltage of the slave circuit Y’’(t) is synchronized intermittently with the input signal, as show in 
figure 7(b). This intermittent synchronous regimen does not allow us to recover the information signal. 
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 (b)                                             (c) 

 

 
  (d)                                             (e) 

 
Figure 8. (a) Novel synchronization scheme for secure communication with chaotic Rössler 
circuits, (b) information signal s(t), and (c) chaotic output voltage X(t) (upper trace) and  
X(t)+s(t) (lower trace), (d) complete synchronization of X variables, (e) synchronization error. 

 
 The origin of this intermittency is the coexistence of attractors in the coupled system [5]. The 
information signal provokes jumps between the attractors resulting in intermittency. In order to avoid 
this inconvenience we can take an advantage that the master circuit has three variables X, Y, and Z 
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which can be used for synchronization and recovering the information signal. The sensitivity of the 
system to a change in a variable may be different for different variables. For our system the variable Y 
is more sensitive to a small perturbation than X. Therefore the variable Y is more convenient for 
synchronization, while the variable X is used for signal transmission and encoding. The novel 
communication scheme is illustrated in Figure 8(a).  
 The information signal s(t) and the chaotic output X(t) without signal and with signal, X(t)+s(t) are 
shown in figures 8(b) and 8(c), respectively. In figure 8(d) we showed synchronization between  
X(t)+s(t). We can see that the synchronization error shown in figure 8(c) is smaller than the error for 
the traditional scheme in figure 7(a). 

6.  Conclusion 
We propose a novel communication scheme for secure communications based on synchronization of 
chaotic systems. The scheme implies the use of two system variables, the one serves for chaos 
synchronizations and the other is used for signal transmission and recovering. We show that the 
synchronization error for the novel scheme is smaller than that for the traditional scheme. 
 The main advantage of the new communication scheme over the traditional one is that when we use 
two channels, sending the information signal via one channel and synchronizing master and slave 
circuits via another channel, we can obtain higher stability in the recovered signal for systems with 
coexisting attractors.  
 The intermittent synchronization regime can be used for further improvement of communication 
security if a proper control of intermittency is organized [6]. 
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