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Introduction

Chaotic dynamics are a behavior exhibited by some nonlinear dynamical systems. 
Despite an appearance of randomness, chaotic dynamics are in fact deterministic.  The 
appearance of randomness is caused by a high dependence on initial conditions exhibited 
in chaotic regimes.  The visual appearance of these dynamics, when plotted against the 
oscillating input voltage, is of a system whose state “hovers” around a limit-cycle, but 
whose state never quite passes through the same trajectory twice.  Consequently, plots of 
chaotic dynamics generally display a thick band of activity indicating the multiple 
trajectories through phase space, rather than a thin line that would suggest a single stable 
trajectory.

Chaotic dynamics in electronic systems have been a subject of interest since Linsay's 
seminal paper in 1981 that demonstrated a simple RLD circuit was capable of producing 
them.

The voltage measured at a point between the resistor and the diode will exhibit chaotic 
dynamics when the voltage source provides an oscillatory input at the resonant frequency 
of the circuit.  

Chaotic Synchronization Demonstrated

In 1993, Newell et al. reported the synchronization of two separate chaotic circuits. 
These results were confirmed and methodology improved on by Mozdy et al in 1995. 
The basic idea that was employed to accomplish this was that of occasional Proportional 
Feedback.  Essentially the idea is that if two systems are relatively similar to begin with, 
only small (linear) corrections will be needed in order to match one to the other.  As a 
result, what is needed is circuitry to compare the master signal to the slave signal and 
circuitry to add that difference into the slave signal.

Chaotic Synchronization Opens Door to Chaotic Encryption

The ability to synchronize chaotic circuits opened the door for using the unpredictable 
nature of chaotic dynamics as a way to encrypt signals along a communication channel. 

Figure 1: A simple RLD circuit capable of producing 
chaotic dynamics



Neff and Carroll described this in 1993, and it was revisited by Wang et al in 2004.  The 
idea is as follows:  A sender encrypts an information signal using a chaotic carrier.  The 
intercepted transmission is chaotic and thus undecipherable.  The receiver removes 
chaotic signal from transmitted signal, revealing the information signal.  Ideally, without 
chaotic parameters and equations (for example, initial conditions), chaos cannot be 
separated from signal.  

Interested to explore the results reported in the afore-mentioned references, we set about 
to implement a circuit that exhibited chaotic dynamics, chaotic synchronization, and 
chaotic encryption.

Results

Chaos in RLD circuit

The voltage recorded from the wire between the resistor and the diode in the RDL circuit 
setup that we built.  For studies which looked only at the behavior of the chaotic circuit, 
the input voltage was monitored as well as a reference for the chaos.  In this example, the 
signal output was in fact chaotic.  

Figure 2: Trace of input signal (top) and chaotic signal (bottom) 
at 121 kHz

Because chaotic behavior is not always immediately evident from a signal trace, 
especially one that is sampled at 4x the underlying oscillation as is here, other 
visualization techniques must be used to observe the chaos.  By plotting VInput vs VRD we 



are in essence plotting two ‘states’ of the system.  In a non-chaotic oscillating system, the 
relationship of VInput and VRD is a limit cycle – if VInput is known, the VRD is known to be 
one or several values.  However, during chaotic behavior, VRD is not predictable knowing 
VInput alone, but also requires a full knowledge of the other states.  During chaotic 
behavior, the system does not repeat the exact state twice - doing so in a dynamical 
system would result in following the previously taken path.  Therefore, while the (Vinput, 
VRD) relationship may have previously been encountered, some other unmeasured state 
variable must be different, and the previously taken path is not the same.  Therefore, the 
two paths can cross without interference.  As a result, the chaotic system does not follow 
a limit cycle but rather forms a ‘cloud’ of data points around the limit cycle.  Figure 2 
shows an example of a Vinput, VRD plot for a non-chaotic system and a chaotic system.

Although we are only recording two ‘dimensions’ of the chaotic system, the system itself 
must exist in greater than two dimensions to allow this overlapping behavior in 2-d space. 
Ideally we would be able to plot more than two state variables simultaneously.  Despite 
the fact that we are only recording two channels, because the behavior of VRD is in fact a 
deterministic function of N unseen variables, plotting VRD at distinct time steps can 
capture the relationship of these variables.  Therefore, VRD(t+1) is a separate ‘state’ than 
VRD(t).  Figure 3 shows this time delay approach to plotting 

Figure 3: Phase space plot of non-chaotic signal (left) and chaotic  
signal (right).  Plotted is the relationship between the input voltage 
(x-axis) and VRD (y-axis).



Figure 4: Time delay plot of chaotic signal.  For each x-coordinate, the green dot at the y-coordinate 
represents the VRD at a following time (dt=1,2,3 or 4).  Red lines were drawn between consecutive data 
points to show associations between points at t and t+dt.  10000 data points are shown here.

Summary of chaos results

Chaotic behavior does not simply appear at the chaotic frequency (121kHz – the resonant 
frequency of the diode and the 10mH inductor).  Rather, this chaotic behavior is highly 
dependent on the amplitude of oscillatory input.  As the amplitude of the input into the 
system increases, the system proceeds through several ‘bifurcation’ stages that are .  This 
is immediately evident from the VInput, VRD plots shown in Figure 4 – as amplitude 
increases, the limit cycle splits into two cycles which cross one another.  This indicates 
that the system is now in a limit cycle moving through 3 dimensions, not just two. 
Increasing the amplitude will continue to increase these bifurcations – or simply an 
increase in the complexity of the limit cycle – until the system becomes chaotic.



Figure 5: Phase space plot (VInput vs VRD) of circuit at chaotic frequency with increasing amplitude.  Note 
how a simple limit cycle exists at low amplitude but raising amplitude (towards the right) causes  
bifurcations and ultimately chaos.

Summary of Synchronization Results

We analyzed the synchronization of our two chaotic circuits in a similar manner to a 
single chaotic circuit described above.  However, rather than expecting to see a chaotic 
relationship between VChaos1 and VChaos2, we had hoped to see a linear relationship 
(VChaos1=VChaos2 for all points), or at the very least a limit cycle suggesting that the two 
variables are related but offset in phase space.  

Figure 6: Scatter plot of dual chaotic circuits, VRD1 vs VRD2.  Left is plot of when 2nd 
chaotic circuit had correction feedback and right is plot without feedback.



Encryption 

Although we did not have success in synchronizing the circuits, we nonetheless sought to 
encrypt information within our chaotic circuit.  Our approach was to use a carrier wave of 
the same frequency as the chaotic signal, and then embed a signal within that carrier 
wave via amplitude modulation (AM).  Presumably, adding this AM-carrier signal to the 
chaotic signal would then require decryption with the same chaotic signal to read out.

The following graphs illustrate an example of our attempt to encrypt information into the 
chaotic signal.  In each instance, we plot a spectrogram of the signal – the Fourier 
spectrum of discrete time frames of the signal and how that changes over time.  



Figure 7: Temporal spectrogram of chaotic frequencies.  X-
axis is frequency, y-axis is time.  Bottom plot represents  
temporal dynamics of the frequency with the highest power.  
This plot represents the spectrogram of a chaotic signal.

Figure 8: Same as above, this plot represents the spectrogram 
of a chaotic signal with embedded 'carrier signal'

Figure 9: Same as above, this plot represents the spectrogram 
of a chaotic signal with the carrier signal minus the chaotic  
signal (no time delay)



Discussion

Our results demonstrate that chaotic dynamics are achievable in a simple RLD circuit, 
confirming Linsay's basic result.  Our observation was that the chaotic regime of our 
circuit was amplitude dependent.  As the amplitude of a particular input frequency was 
increased, we observed a progression of dynamical regimes that began with oscillatory 
behavior that was not chaotic, continued through bifurcations in the oscillation, and 
ended in chaotic oscillations.  

We were not able to reproduce results of Mozdy et al. to observe synchronization 
between two RLD circuits exhibiting chaotic dynamics.  However, this result is very 
similar to that reported by Richert and Whitmer.  They observed, as we did, that “using 
the circuit as described, synchronization was only possible in non-chaotic regimes” [data 
not included].  We observed a trade off between synchronization and chaotic oscillation 
between the two circuits.  Several explanations for this behavior can be inferred, which 
center around the explanation, also reached by Richert and Whitmer, that the 
unidirectional control circuit was working incorrectly.

One explanation is that our chaotic oscillations were at 121kHz, and by the time that our 
circuit calculates the necessary correction, the slave oscillator is already beyond the point 
where the correction would have the desired effect.  While possibly having the desired 
effect if instantaneous, the simple linear correction approach to synchrony is probably not 
effective because of the time delays in the op-amps and transmission.  Despite attempting 
to solve the problem with a delay circuit, we did not seem to be able to compensate for 
this effect.  Richert and Whitmer suggested that “op amps with a higher gain than the 
TL071CN” might help to reduce the lag.

Another explanation centers the problem on the inductors... we were not able to use 
inductors of the appropriate size called for in the design (100mH).  Consequently we 
attempted to compensate for this in the design.  One of the strange effects that was 
observed that may have been a consequence of this was that the chaotic dynamics of the 
master circuit would drift out of a chaotic regime into a non-chaotic one.  This effect 
could be reset by touching the inductor in the circuit, but the drift would start over from 
the beginning.  We addressed this by increasing the size of the capacitor in our variable 
gain filter unit, and this seemed to fix the problem.  This example however demonstrated 
that without a thorough parameter tuning of the system, attempts to get synchrony 
working would be difficult since we did not have a principled way to address issues like 
this.

Our ability to fully build a chaotic encryption system was hampered by our lack of a 
system that appropriately synchronized.  Despite this, we  got a result that demonstrates 
the ability to perform a simple encryption using the pseudo-random nature of chaotic 
dynamics.  It remains to be seen the degree to which a synchronized slave circuit could 
decrypt a signal in the manner that we encrypted.



Methods

Initial investigations of chaotic dynamics were conducted on a breadboard with the 
simple design displayed in Figure 1.  We discovered that identifying the chaotic regime 
of the circuit could be done by  conducting parameter sweeps of frequency and amplitude 
of the input oscillatory voltage signal.  By plotting input voltage against output voltage, 
we were able to visually identify chaotic regimes by observing patterns that exhibited 
thick trajectory bands.  

We relied heavily on the circuit design of Richert and Whitmer, 2003, when exploring 
chaotic synchronization.  As mentioned in the introduction, this circuit uses the notion of 
Occasional Proportional Feedback to achieve synchrony.  To generate the correction 
signal, the states of the two circuits are compared, and a scaled down version of this 
difference is added to the slave’s drive signal.  This correction signal can be thought of as 
a negative feedback signal, or weak coupling in a coupled oscillator system.  The 
coupling is unidirectional, which means that the master circuit does not have any 
correction or feedback applied to its drive.  

All op amps are ST's TL071CN.

The following sections go into more detail about each part of the circuit.

Figure 10: Circuit diagram from Richert and Whitmer, 2003.  The two chaotic circuits are labeled 
as Master and Slave



Subtracter and Variable Gain Circuit

The subtracter unit, responsible for measuring the difference between the slave and the 
master signals, works in the following way.  It is comprised of three op amps  Two op 
amps act as buffers and the third computes the subtraction. This subtracted voltage is 
then scaled down to produce a variable gain before being fed back into the slave.  This is 
accomplished by a simple RC filter circuit using a variable resistor to adjust the tuning of 
the filter.  

Voltage Adder Circuit

The voltage adder circuit is based on a two op amp circuit that adds current.  A 
consequence of this is that voltage is inverted, therefore, to correct for this, a third op 
amp operates as an inverter.

Delay Circuit

Figure 11: Richert and Whitmer's Subtracter Circuit

Figure 12: Richert and Whitmer's Voltage Adder Circuit plus Slave chaotic oscillator

Figure  13: Richert and Whitmer's Delay Circuit



A delay circuit is also included.  Phase lag introduced by the op amps is significant, thus 
this portion of the circuit is intended to compensate for that.  Op amps between the drive 
signal and the master oscillator match the amount of delay between the drive and the 
slave oscillator. 

Encryption

For the simple encryption circuit we built a second adder circuit as described above and 
used it to add a second oscillatory signal from a separate signal generator to the chaotic 
carrier coming from the master chaotic circuit.  

Recording and Analysis

Data was recorded using a National Instruments signal acquisition card, sampled at a rate 
of 400 kHz, and uploaded into a custom designed Labview program which permitted us
to monitor signal acquisition and exported the signal data to a text file. The signal data 
was then uploaded into MATLAB for further analysis. 

Acknowledgments

We would like to thank Ben Migliori, David Kleinfeld, and Allen from the Kleinfeld Lab.

References

Linsay, P.S. (1981). Period doubling and chaotic behavior in a driven anharmonic
oscillator. Physical Review Letters, 19, 1349-1352.
Mozdy, E., Newell, T.C., Alsing, P.M., Kovanis, V., Gavrielides, A. (1995).
Synchronization and control in a unidirectionally coupled array of chaotic diode resonators.
Physical Review E., 51(6), 5371-5376.
Neff & Carroll, Circuits That Get Chaos in Sync, Scientific American, August 1993
Newell, T.C., Alsing, P.M., Gavrielides, A., Kovanis, V., Synchronization of chaos using
proportional feedback. Physical Review E., 49(1), 313-318.
Richert, M., Whitmer, D., Chaotic Dynamics of RLD Oscillator, Unpublished lab report for biophysical 
measurements lab, UCSD Physics Department, June 13, 2003.
Wang, X., Zhan, M., Lai, C.H., Gang, H., Error function attack of chaos synchronization based encryption 
schemes, Chaos, 14(1), March 2004


